Few Islands Approximation of Hamiltonian System with divided Phase Space
نویسندگان
چکیده
منابع مشابه
Asymptotic Statistics of Poincaré Recurrences in Hamiltonian Systems with Divided Phase Space
During the last two decades the local structure of the phase space of chaotic Hamiltonian systems and areapreserving maps has been studied in great detail [1–5]. These studies allow one to understand the universal scaling properties in the vicinity of critical invariant curves where coexistence of chaos and integrability exists on smaller and smaller scales in the phase space. The most studied ...
متن کاملsynthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
Phase space transport in noisy Hamiltonian systems.
This paper analyzes the effect of low amplitude friction and noise in accelerating phase space transport in time-independent Hamiltonian systems that exhibit global stochasticity. Numerical experiments reveal that even very weak non-Hamiltonian perturbations can dramatically increase the rate at which an ensemble of orbits penetrates obstructions like cantori or Arnold webs, thus accelerating t...
متن کاملPhase-space metric for non-Hamiltonian systems
We consider an invariant skew-symmetric phase-space metric for nonHamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skewsymmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered. PACS numbers: 45.20.−d, 02.40.Yy, 05.20.−y
متن کاملPhase space flows for non-Hamiltonian systems with constraints.
In this paper, non-Hamiltonian systems with holonomic constraints are treated by a generalization of Dirac's formalism. Non-Hamiltonian phase space flows can be described by generalized antisymmetric brackets or by general Liouville operators which cannot be derived from brackets. Both situations are treated. In the first case, a Nosé-Dirac bracket is introduced as an example. In the second one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Experimental Mathematics
سال: 2019
ISSN: 1058-6458,1944-950X
DOI: 10.1080/10586458.2018.1559777